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One-parameter families of periodic solutions arising from equilibrium positions of an autonomous system are considered. It is 
shown that they may be divided into families of the first and second kind; families of one kind cannot be identical when continued 
as the parameter is varied. As a result, a lower bound is obtained for the number of families that may be continued to arbitrary 
large values of the norm or the period, and an estimate is also obtained for the number of periodic solutions with a given minimal 
period. Additional properties of these families are established for Hamiltonian systems satisfying certain symmetry conditions. 
The results are illustrated for an articulated pendulum. © 2000 Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Consider an autonomous system depending on a parameter h 

= f ( x , ~ , ) ,  x ~ R " ,  f ( x , ~ , ) ~ C 3 ( R  " x R ,  R") (1 .1)  

and also a system 

= f ( x ) ,  x ~ R  n, f ( x ) ~ C 3 ( R " , R  ") (1.2) 

which admits of a single-valued integral 

H(x(t)) - ~, = const (1.3) 

System (1.2), (1.3) may be reduced to the form of (1.1) by eliminating one of the variables through the 
use of integral (1.3). Conversely, introducing an additional variable Xn+l = h in (1.1) and adding the 
equation xn+t = 0, we obtain system (1.2), (1.3) with H(x) = x,+v Note, however, that the results obtained 
below are directly applicable to either of these systems. 

Among the systems of type (1.2), (1.3) there are, in particular, Lyapunov systems and Hamiltonian 
systems (in the latter case, some results analogous to those obtained below have been established 
before [1]). 

Let x(h) be the family of equilibrium positions of system (1.1) (f(x(h), h) = 0). If some h = hk exists 
such that the matrix (fx(x(hk), hl,) has a pair of pure imaginary eigenvalues ito, the other eigenvalues 
are not multiples ofho and et'(hk) ¢ 0 (a(h) + io(h) is the continuation as h is varied of the eigenvalue 
ico), then, by Hopf's theorem [2], for small values of the parameters a unique family of periodic solutions 
x(t, h(s)) = x(t + T(s), h(s)) exists such that 

x( t ,~ . (s ) ) - -oxt .=x(~k) ,  T(s)--+2r~/CO, ~(s) - - - )~ .  k as  s - + 0  (1.4) 

As a rule, the equilibrium positions xk in system (1.2), (1.3) are isolated. By Lyapunov's theorem [3], 
another sufficient condition for the existence of families of periodic solutions of type (1.4) is that no 
eigenvalues exist which are multiples of ico. Note that this condition, like the condition ct'(hk) ¢ 0 in 
Hopf's theorem, is satisfied in the generic case (which will be that considered below). 

The aim of this paper is to make a global analysis of system (1.4). The following results of [4, 5] will 
be used. 

Solutions may bifurcate as the parameter s is increased, so that continuation as s is varied may fail 
to be unique if s is sufficiently large. Nevertheless, from every "tree" of such solutions one can single 
out a one-parameter family x(t, h(s)) which has the following properties. 
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Continued as s is varied, the family x(t, h(s)) may end at some equilibrium position Xq (in that case 
one may assume that x(t, h(s)) coincides with some family arising from Xq; it may also happen that 
q = k). Otherwise, x(t, h(s)) may be continued to as large a value as desired 

M(s) = T(s) + II x(s) II, II x(s) II =1 ~,(s) I + max~ II x(t, ~(s)) II (1.5) 

The continuous function T(s) is equal to the minimum period Train(S) of the solution x(t, h(s)) with 
the possible exclusion of an at most denumerable set of points Sr where Tmin(Sr) = T(sr)/qr, where 
qr > 1 is an integer (at such points families with minimum period T(sr)/qr may bifurcate from x(t, k(s))). 

The solution x(t, k(s)) of Eq. (1.1) or Eq. (1.2) corresponds to the variational equation 

= A(t,s)y, A(t,s)= fx(x(t,~.(s)) (1.6) 

Let Ok(S) (k = 1, ..,, n) denote the multipliers of Eq. (1.6). Since we are considering autonomous 
systems, this equation has a periodic solution Yl = /~(t, h(s)); corresponding to which is the multiplier 
pl(s) = 1. In the event of  an integral (1.3), the solution will correspond to a double multiplier pa(S) = 
p2(s) = 1 [61. 

Fixing a value of some coordinatexk, let us consider the corresponding Poincar6 map G(v, h). Suppose 
the orbit x(t, h(s)) intersects a plane Xk = C at a point v(s); then 

v(s)=G(v(s), Ms)) (1.7) 

As we know, the eigenvalues of the Jacobian B(s) = Gv(v(s), h(s)) are pk(S) . . . . .  On(S) (k = 2 for system 
(1.1) and k = 3 for system (1.2), (1.3)). 

Set ks(s) = dh(s)/ds and d(s) = det[I - B(s)], where I is the identity matrix. It is obvious that 

d(s) = (1 - Pk (s))(1 - Pk+t (s))...(l - p, (s)) (1.8) 

If d(s) ~ 0 then, by the Implicit Function Theorem, the solution ,(s) of Eq. (1.7) is uniquely 
continuable as the parameter h is varied, provided that I k - h(s) [ is small enough; hence hs(s ) ~ 0. If 
d(Sk) = 0, then hs(Sk) = 0 [4], and conversely. Thus, the zeros of the functions ks(s) and d(s) coincide. 
In the generic case, all the zeros are simple. 

2. G L O B A L  C O N T I N U A T I O N  OF T H E  S O L U T I O N  

Suppose the family x(t, h(s)) =x(t + T(s), k(s)) arises from a certain equilibrium condition x,. We will 
denote by ak the number of positive eigen values of the matrix f,(xk). 

Definition. We will call x(t, k(s)) a family of the first (second) kind if the function ( -  1)akh(s) increases 
(decreases) for small s. 

Theorem 1. Families of one kind cannot coincide when continued with respect to a parameter. 

Proof. Suppose the families xl(t, kx(s)) and x2(t, X2(S)), arising from equilibrium positions Xk and xp 
(possible k = p), coincide. Then xa(t, hi(s)) = x2(t, h2(s.  - s)) ,  Xl(t, h i ( s . ) )  = Xp and M(s) = hz(S, - s) 
for some s*. Suppose one of hi(s), h2(s) is an increasing function and the other is a decreasing function 
for small s; then dM(s)/ds and, consequently, d(s) has an even number of zeros in (0, s,); consequently, 
d(0) and d(s.) have the same signs. As can be seen from (1.8), this happens if the number of multipliers 
pq ~ (1, o~) when s = 0 and s = s, is either even at both points or odd at both points (complex multipliers 
are conjugate in pairs and do not affect the sign of d(s)). Such multipliers correspond to positive 
eigenvalues ~q and vq of the matrices fx(xk) and fx(xp) (Oq(O) = exp(l~qTl(0)) and pq(S,) = exp (VqTl(S,)); 
therefore, the quantities ak and ap are either both even or both odd. Since, by assumption, one of the 
functions M(s), h2(s) increases and the other decreases for small s, it follows that the families xl(t, hffs)) 
and xz(t, k2(S)) are of different kinds. 

But if the functions hi(s), hz(S) vary in the same direction, then d(s) has an odd number of zeros in 
(0, s.). Consequently, one of the quantities ak, ap is even and the other odd, so that the families are of 
different kinds. 

Thus, in all cases, families that coincide when continued as s is varied are of different kinds. The 
theorem is proved. 
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Let  us assume that the system has a finite number of equilibrium positions Xk, hk(k = 1 . . . .  , p), and 
therefore  a finite number of corresponding families of periodic solutions. Let  N1 and N2 denote the 
total number  of families of  the first and second kinds respectively. As follows from Theorem 1, when 
they are continued as the parameter  is varied, only families of different kinds may coincide. Hence the 
following proposition holds. 

Corollary 1. At least IN 1 - N21 families of periodic solutions may be continued as the parameter  s 
is varied up to values of M as large as desired. 

It is obvious that families Xl(t, hi(s)) and x2(t, h2(s)) arising from a single equilibrium position are of 
the same kind if kl(S) and he(S) vary in the same sense for small s, i.e., if the corresponding bifurcations 
are of the same type (supercritical or subcritical). Therefore,  in a system with one equilibrium position, 
the number of families that are continuable as s is varied up to values of M as large as desired is at 
least In1 - n2[, where nl and nz are the number of supercritical and subcritical bifurcations. 

Remark. It has been proved [4] that an equilibrium point ~, h~ to which one family of periodic solutions 
corresponds may be assigned the index + 1 ("source") or -1  ("sink") depending on the sign of a'(hk) (a(kk) = 0) 
and the number ak of positive eigenvalues of the matrix fx(Xk). This proves that families corresponding to equilibrium 
positions with different indices cannot coincide when continued as the parameter is varied. A classification of this 
kind is not applicable to system (1.2), (1.3), because here the equilibrium positions are usually isolated (whereas 
in system (1.1) the functions a(k) corresponds to a continuum of equilibrium positions x(h)); in addition, the system 
may have several families of periodic solutions. Hence the classification assumed in this paper, which is equally 
applicable to systems (1.1) and (1.2), (1.3), is in this sense more general. 

3. T H E  E X I S T E N C E  OF S O L U T I O N S  W I T H  A G I V E N  P E R I O D  

We now consider the problem of whether systems (1.1) and (1.2), (1.3) have periodic solutions with a 
given minimum period T. Incidentally, known results of this kind are concerned mainly with Hamiltonian 
systems (see, e.g., the survey [7]). 

Without loss of generality, we will assume that in system (1.1) Xk = 0, kk = 0 for some k, in which 
case f(0, 0) = 0. Let  us assume that for suitable constants L, C and r 

I[f( x,  )ll<tlM+c for I lx l l+l~ . l>r  

As to Eq. (1.2), we may assume that f(0), so that here too we assume that 

(3.1) 

IIt(x)ll< Zllxll for Ilxll > r (3.2) 

Let NI(T)  and Nz(T) denote the number of families Xk(t, h(s)) of the first and second kind satisfying 
the additional condition Tk(0 ) = 2-rr/to k < T. 

Theorem 2. For almost all T < 2~r/L at least INI(T) - N2(T) I periodic solutions exist with minimum 
period T. 

Proof. As is obvious from the proof  of Theorem 1, at least [NI(T) - N2(T) I families of periodic 
solutions xk(t, h(s)) with initial periods Tk(O) < T cannot coincide with one another when continued 
as s is varied. Consequently, such a family either coincides with a family of another kind Xp(t, h(s)) whose 
initial period is Tp(0) > T or is continuable as s is varied up to values of Tk(S ) or IIx~(s)ll as large as 
desired. It is clear that in the first two cases Tk(s) = T for some s; we will show that this happens in the 
last case as well. 

By (3.1), constants L '  and C' exist such that, for all k ~ R and x E R n 

Consequently 

Ilf( x, ~)11 < L'IM + c '  (3.3) 

dllxll/dt = (x, x)/INI ~< Ilxll = lie(x,  )11 <~ L'llxll + c '  

Therefore,  for any solution x(t) of Eq. (1.1) the following inequality holds 

Ilx(/)l[ ~< (llx(t0)l[ + C' / L')exptL'(t  - t o )] - C" / L' 

(3.4) 

(3.5) 
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Suppose 

maxt[lx~-(/, ~ ( s )> l l -~  as s--->~ 

but Tk(S) and h(s) remain bounded. Since the minimum distance between extremal values of 
IIx~(t, x(s))ll is less than Tk(s), it follows by (3.5) that IIx~(t, x(s))ll ~ ~ for all t, and therefore 
II xk(t, x(s))ll > r for large s. But then, by a theorem due to Yorke [8], if condition (3.1) holds, we have 
Tk(S) > 2~r/L > T; consequently, Tk(S) = T for some s. Clearly, this conclusion holds if X(s) ---> ~ as 
S ---> o o .  

In system (1.2), (1.3) the quantity k(s) = H(x(s)) remains bounded for finite IIx(s)ll; hence IIx(s)ll 
as M(s) ---> co, so that the above arguments remain valid. 

As remarked in the introduction, Tk(S) is equal, for almost all s, to the minimum period of the solution 
xk(t, s). The theorem is proved. 

If 

lim(Uf(x, 7~)ll/llxll)--->0 as Ilxll+l~,l--->~ 

then the constant L in (3.1) may be assumed to be as small as desired. Hence the theorem is true for 
any T. In particular, in the case of a single equilibrium position, the number of T-periodic solutions is 
at least Inl(T) - n2(T)l, where nl(T) and n2(T) are the numbers of supercritical and subcritical 
bifurcations with initial periods less than T. 

4. H A M I L T O N I A N  SYSTEMS 

Let us consider in greater detail Hamiltonian systems 

~¢ = JHx(X), J =[[Ol 101 I, x ~ R 2n 
(4.1) 

Equation (4.1) admits of an integral (1.3), and so the results obtained above remain valid. It is obvious 
that for a family x(t, k(s)) corresponding to an equilibrium ~osition xk, the energy h(s) of the system 
varies in the same sense as for the corresponding family x (t, s) of the linearized system (H°(x) = 
(H~(Xk)X, x), where (a, b) denotes the scalar product of vectors a and b). Assuming without loss of 
generality that Xk = 0, we take x°(t, s) = sx(t), so that 

~.~(0) = 2s(Hxx(O)x(t), x(t)) 

We know that in Hamiltonian systems with a sign-definite Hessian H~,(0), all the eigenvalues of the 
matrix JH~,(O) are pure imaginary, so that ak = 0. As a result, if H,~(0) > 0 all families are of the first 
kind (ks(0) > 0), and, if H~,(0) < 0, they are all of the second kind (ks(0) < 0). If the Hessian H=(0) 
is not sign-definite, the system may have families of different types. 

Let us assume that the linearized system has the form 

x: sx s:ll0 c 

where C and L are symmetric matrices of order n, L being positive-definite. In particular, the system 

ME + Cz = 0, z ~ R", M > 0 (4.3) 

may be reduced to the form (4.2) if we put z = xb ME = x2, x = (Xl, x2), L = M -1. 
For an oscillatory solution of Eq. (4.2), x = c exp(itot) (c = (cl, c2)), we have i¢ocl = Lc2, -i¢oc2 =Ccl ,  

and therefore 

(Sx, x )=(Cc  t, c l )+(Lc 2, c2)=2(Lc2, c2)>0 (L>0)  

Thus, in the system under consideration, h~(0) > 0 for any family. 
In applications one often encounters Hamiltonians satisfying certain symmetry conditions; we will 

show that the families of solutions being considered here will then possess certain additional properties. 
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Let us first assume that 

H(q, p) = H(q, -p)  (4.4) 

where q = (xl . . . . .  xn) and p = (Xn+l . . . . .  x2n) are generalized coordinates and momenta. A relationship 
of this kind holds, in particular, when the Hamiltonian is the sum of the kinetic and potential energies 
of a mechanical system; we then have 

I I (4.5) n(q,  p) = Y~ ap,(q)ppp k + V(q) 
t,,I'=1 

Proposition 1. In system (4.1), (4.4) the family x(t, s) = (q(t, s), p(t, s)) will satisfy the following relations 
if the origin of t is suitably chosen 

q(t, s ) = q ( - t ,  s), p(t, s ) = - p ( - t ,  s) (4.6) 

Proof. By (4.4) 

Hq(q, p ) = H q ( q , - p ) ,  Hp(q, p ) = - H p ( q ,  - p )  (4.7) 

Therefore, together with x(t, s), the function x.(t, s) = (q ( - t ,  s), - p ( - t ,  s)) is also a solution of system 
(4.1). Since the solution x(t, s) for sufficiently small is unique up to a linear translation of t, it follows 
that x.(t, s) = x(t + l, s) for some l. Applying the transformation t --~ t + l/2, we find that the solution 
x(t, s) satisfies (4.6). If this relation fails to hold for some s., then for s > s, a family x.(t, s) also exists 
with the same minimum period T(s), which coincides with x(t, s) when s = s.. But this is impossible, 
since in the generic case the minimum period of the families bifurcating from x(t, s) is close to T(s)/q, 
where q > 1, in the neighbourhood of the bifurcation point [4]. 

Let us assume now that 

H(x) = H(-x) (4.8) 

In particular, this condition will hold for Hamiltonian (4.5) if apk(q) = apk(--q)(P, k = 1, ..., n) and 
V(q) = V( -q) .  

By (4.8), Hx(O) = O, that is, x = 0 is an equilibrium point of the system; let x(t, s) be the corresponding 
family of periodic solutions. 

Proposition 2. If condition (4.8) holds, the family x(t, s) satisfies the relation 

x(t. s ) = - x ( t +  T/2,  s) (4.9) 

Proof. By condition (4.8), the function -x( t ,  s) also satisfies Eq. (4.1). For small s, by virtue of the 
uniqueness of the solution, we have 7-x(t, s) = x(t + l, s) for some l < T. Consequently, x(t + 2/, s) = 
x(t, s), that is, l = T/2. The rest of the proof is analogous to that of Proposition 1. 

Corollary 2. If condition (4.8) holds, the family x(t, s) cannot end at an equilibrium point ~ ¢ 0. 
Indeed, by virtue of (4.9), the mean value of x(t, s) in (0, T(s)) is zero, which is obviously not true 

for solutions close to Xk ¢ 0. 
Note that the above arguments do not imply that the systems under consideration have no solutions 

other than those satisfying relations (4.6) or (4.9); rather, such solutions cannot be obtained by 
continuation of Lyapunov families as the parameter is varied. 

5. E X A M P L E  

The previous results will now be illustrated by an example: the free oscillations of an n-articulated pendulum (see 
Fig. 1). The kinetic and potential energies of the system are 

K =  MI{[ lkJcksinxk]2+[ l~J.'kcosxk] 21 
"=i k=i (5.1) 



194 A. A. Zevin  

ln~m n 
Fig. 1. 

V = g ~ [lj(I - cosxj )M~ ]; Ms = ms + ms+l +--. +mn 
j=i 

where xs, ms and ls are the angular coordinates, masses and lengths of the sections, and g is the acceleration due 
to gravity. 

The system has an integral 

K(x(t),  x(t)) + V(x(t)) = ~. (5.2) 

In an equilibrium position ~ = (x~ . . . . .  x~), the coordinates arexq k = 0 or ~r. Hence, the total number of equilibrium 
positions is 2 n. Linearized in the neighbourhood of Xk, the system has the form of (4.3), where 

k c k cosx~M,. C=  diag(cl k . . . . .  cn ), s = gls . 

(5.3) 
n k k 

M = [rot, q ]1 , ml, q = ll, l q cOSXp cOS Xq Mq (q >~ p), mqp = mlu t 

Since M > 0, the number m of positive eigenvalues of the matrix M - 1 C  equals the number of positive c~, that 
k k 2  is, the number of coordinates xs = 0. In the generic case, for each such quantity (%) there is a family of periodic 

solutions of the original system xqk(t, s)(xqk(t, S) ~ xk, T~(s) ~ 2~r/% k as s ---) 0). 
The number of equilibrium positions for a given m equals the number of combinations C~; consequently, the 

total number of these families is N = C~ + 2C~ + ... +nC~. 
It is obvious that in z = x - xk coordinates the kinetic and potential energies of the system satisfy the relations 

K(z. i ) = K ( z ,  - z ) .  K(z, z ) = K ( - z . - z ) ,  V(z)=V(-z)  

Therefore, the corresponding Hamiltonian H(q, p) satisfies conditions (4.4) and (4.8). As a result, the Lyapunov 
families satisfy relations (4.6) and (4.9). Returning to the original coordinates, we obtain 

k ~k~(t, s ) = - X ~ ( - t ,  S) x~/t,  s )= Xqt- t ,  s), 

x~{t, s)-x~ =-x~(t+T/2, s)+xk (5.4) 

Since the linearized system has the form (4.3) it follows, as shown previously, that for all families ks(0 ) > 0. 
Hence, families that arise from the same equilibrium position are of the same kind (first or second, if the number 
of quantities ak = n - m k  is even or odd, respectively). Consequently, such families cannot coincide when continued 
by varying the parameter. On the other hand, by the first and third relations in (5.4), Xqk(T/4, s) = Xk, SO that families 
emanating from different equilibrium positions Xk and Xr also do not coincide. Thus, every family is continuable 
up to norms or periods as large as desired. 

We will show that in any case T~(s) ~ oo as s ~ ~o. 
Indeed, as is obvious from (5.1) 
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By the first relat ion of (5.4) 

t t  

K(x, x)~>0, 0 < ~ V ( x ) ~ < E , = 2 g ~  I,,,M s 
.~'=] 

.k x~(O, s ) = 0 ,  K(x~(0, s), xq(0, s))=O 

Taking (5.2) into consideration,  we find that h ~< V., and so 

X~,~O. ,~.), ~(t, s)) ~ v, 

for all t. Since K(x, x) is a positive-definite quadrat ic  form in/~ whose coefficients are periodic functions of x, it 
follows from the last inequality that 

II i~(t ,  s)II ~ c 

for some constant  c and any t and s. Therefore,  for any coordinate,  we have 

~ . t i ~ c l t _ T / 4 1  I xqp(t ,s)-Xqt,(TI4) 

Consequently,  the per iod Tkq(S) tends to infinity together  with II Xqk(s)ll • 
Let  to. be the least frequency of free oscillations of the systems i inearized at x = x~(k = 1, ..., 2n). It follows 

from the preceding results that  for any T > 2~r/to, at least N periodic solutions of type (5.4) exist with the least 
per iod T. 
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